
Engineering Notes
Multibody Model of an Ornithopter

Jared A. Grauer∗ and James E. Hubbard Jr.†

University of Maryland, College Park, Maryland 20742

DOI: 10.2514/1.43177

I. Introduction

M INIATURE ornithoptic aircraft are receiving growing
attention from hobbyists and researchers as interest in

promising new vehicle designs, made possible by miniaturizations
in electronics and improvements in materials manufacturing,
synergizes with inspiration from winged creatures in nature. It is
envisioned that the agility, maneuverability, robustness, and con-
textual camouflage exhibited by these avian-inspired robots will fill a
niche left open by conventional fixed and rotating wing aircraft in the
quest for autonomous flight vehicles which integrate multimission
capabilities such as perch and stare maneuvers, flight through clut-
tered indoor environments, and long endurance flight.

Vital to the achievement of these goals is the development of an
accurate flight dynamics model, which constitutes a significant chal-
lenge due to the complex aerodynamic flowfields, variable iner-
tial properties, and highly nonlinear motions which characterize
ornithoptic flight. Although the aerodynamic modeling of flapping
wings remains an open research problem, ongoing developments in
recent years using both analytical blade element methods [1–3] and
computational fluid dynamics [4–6] have shed light on the principle
aerodynamic phenomenon that enables flapping flight. Recent
studies in insect and micro air vehicle flight dynamics have applied
these aerodynamic models to the conventional equations of a rigid
body aircraft for the purposes of simulation and control [7–9]. As the
vehicle size is increased to meet payload requirements and to reduce
wind gust sensitivity, the wings become increasingly massive and
flap at lower frequencies, which requires multibody models to de-
scribe the changing mass distribution and coupling effects between
moving aircraft components [10,11].

The focus of this work is to develop the nonlinear multibody flight
dynamics of an ornithopter and cast the equations into a canonical
form that is convenient to perform the system identification, non-
linear controller synthesis, and simulation case studies required to
realize an autonomous ornithopter. First, an ornithopter research
platform is introduced and observations of the flight dynamics and
mass properties warranting a nonlinear multibody model are dis-
cussed. Although centered around a particular ornithopter, themodel
presented in this paper is easily extended to describe other aircraft
configurations, actuation methods, and aerodynamic models.
Second, the ornithopter is posed as a multibody problem, after
which the equations of motion are derived using energymethods and
are molded into a canonical form. Lastly, a simplified aerodynamics

model is used to perform a realistic simulation which illustrates the
trends observed in flight data and strengthens arguments for using a
nonlinear multibody model.

II. Ornithopter Test Aircraft

The ornithopter aboutwhich themodeling is centered is amodified
version of the “Slow Hawk” Kinkade ornithopter [12], shown in
Fig. 1, which has a wingspan of 1.2192 m and a mass of 0.4460 kg.
The vehicle is flown remotely by a pilot using standard hobby radio
equipment. One joystick commands the speed of a dc motor, which
through a gear box and a four-bar linkage flaps thewings in unison to
generate lift and thrust. A second joystick is used to command two
servomotors, which pitch and roll linkages in a serial manner to
deflect the tail and generate aerodynamic control forces.

Unlike conventional aircraft, an ornithopter experiences signifi-
cant and rapid changes in the mass distribution during flight due to
the flapping of the wings and the positioning of the tail. Mass prop-
erties were measured by partitioning the ornithopter into five rigid
bodies and measuring the mass properties of the composite compo-
nents. The fuselage comprises 76% of the total vehicle mass,
followed by the wings with 19%, and the tail linkages with 5%.
Figure 2 illustrates the dramatic changes in the vertical position of the
center of mass and the pitching and yawingmoments of inertia of the
entire vehicle as the wings change position, where the vehicle inertia
is resolved about the vehicle center ofmass, which is given relative to
the stationary fuselage center of mass.

The ornithopter is physically constructed as a multibody system
and requires a multibody model to accurately account for the
configuration-dependent inertial properties. Additionally, previous
work [13] has reported that this ornithopter flaps at 4.7 Hz and
experiences pitch rates of 5:62 rad=s and heave accelerations of
46:1 m=s2 in straight and level mean flight, which indicates that
a multibody model should be used to capture the fast motions and
the interactions of the wings flapping with the rest of the system.
Additionally a multibody model is convenient for resolving
aerodynamic forces, as the body configuration and velocities are state
variables within the model.

III. Model Configuration

The ornithopter is modeled as a system of five rigid bodies,
consisting of three chains emanating in a tree structure from a central
fuselage body, as shown in Fig. 3. Each linkage i on chain j has mass
mij and inertia tensorIij about center ofmassCij and reference frame
Kij. Vectors lij and rij describe the positions of the inboard and
outboard revolute joint locations, which rotate about axes zij and
z�i�1�j, respectively. The first two kinematic chains are the right and
left wings, which rotate about the longitudinal axis of the fuselage.
The third chain comprises the tail mechanism, which collectively
pitches and rolls about the fuselage through two linkages.
Additionally an inertial reference CI , KI is taken at a fixed point on
the surface of the Earth.

The fuselage, body 0, has an inertial position r and an orientation
quaternion � which are expressed in the inertial frame KI . The
translational and rotational velocities of the fuselage are � and!, and
are expressed in the fuselage frame K0. The attached linkages have

angular positions �� ��11; �12; �13; �23�T and angular velocities _�
which are expressed in their respective reference frames. This choice
of position and velocity states parallels the conventional aircraft
equations, provides a compact formulation of the dynamics, and
forms the equations of motion in the same reference frames in which
sensor measurements are taken and control forces are applied.
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Using the configuration of the system and the body-fixed
geometric vectors, the position and velocity of link i of chain j can be
written

r ij � r� r0j �
Xi�1
k�1
�rkj � lkj� � lij (1)

! ij �!�
Xi
k�1

_�kjzkj (2)

� ij � �� S�!�r0j �
Xi�1
k�1

S�!kj��rkj � lkj� � S�!ij�lij (3)

where S��� denotes the matrix implementation of the cross- product
operation.

IV. Equations of Motion

The equations of motion are differential equations which describe
the evolution of the state variables in time. The generalized position
states are the position and orientation of the fuselage and the joint
angle vector, and the generalized velocity states are the translational
and rotational velocities of the fuselage and the joint rate vector:

p � � rT �T �T �T (4)

v � � �T !T _�
T �T (5)

The kinematic equations relate the derivatives of the position states
to the velocity states and are written

_p� JI;0K v (6)

where thematrix JI;0K is dependent on the fuselage orientation and has
along the diagonal a rotation matrix, an orientation Jacobian matrix,
and an identity matrix.

The dynamic equations of motion describe the evolution of the
velocity states as a function of the applied forces and torques on the
system. TheBoltzmann–Hamel equations are employed in thiswork,
which are based on energy functions and allow for state variables to
be expressed in different reference frames. Although numerous
differentiations of the energy functions are required, the calculations
are procedural and can easily be implemented in symbolic algebra
software packages. Additionally the analysis results in a minimal
number of state equations and the energy functions may be used as
inspiration for the design of nonlinear control laws [14]. The kinetic
energy of the ornithopter is

T � 1

2

X3
j�0

X2
i�0

mij�
T
ij�ij �!TijIij!ij (7)

which combines the translational and rotational energies of the
fuselage and linkages. The Boltzmann–Hamel equations are

d

dt

�
@T

@v

�
T

�
�XN
k�1

�
@T

@vk

�
�k

�
v � �JI;0K �T

�
@T

@p

�
T

� � (8)

where � represents a vector of generalized forces and torques acting
on the velocity states, and where

Fig. 1 Ornithopter research platform [13].
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Fig. 2 Variation of the gross mass distribution with wing position.

Fig. 3 Multibody representation of the ornithopter.
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� k � �JI;0K �T�k�JI;0K � (9)

with matrix entries

f�kgij �
@

@pj
fJ0;IK gki �

@

@pi
fJ0;IK gkj (10)

After some manipulation, the dynamic equations of motion may
be partitioned as

M �p�_v�C�p; v�v�E�p; v� � � (11)

which is a canonical form for the nonlinear control of mechanical
systems such as spacecraft and robot manipulators [15]. The matrix
M�p� describes the generalized mass and inertia properties of the
system and is dependent upon the joint angles. The matrix C�p; v�
contains nonlinear coupling forces including Coriolis and centripetal
accelerations. The vector E�p; v� is an additional vector which
describes possibly nonconservative generalized forces and torques
imparted on the system by the environment through which it moves.

The equations ofmotion for thefive body ornithopter were derived
using the presented equations and the software packageMathematica
[16]. Although too lengthy to present, the resulting matrices are
intuitive in their couplings and possess the expected properties [17].
For instance, the mass matrix is a symmetric positive definite matrix
with the vehicle mass, vehicle inertia, and linkage inertia along the
block diagonal, and terms representing couplings between the
fuselage translational velocities, fuselage rotational velocities, and
joint rates on the off diagonal. The mass matrix was partitioned by
factoring the acceleration terms resulting from evaluating the first
term in Eq. (8). The nonlinear couplingmatrix does not have a unique
representation, but by the extension of Lewis et al. [17], can be
formulated as

C� 1

2
_M�

XN
k�1

�
@T

@vk

�
�k �

1

2

�
@M

@p

�
�v	 I��JI;0K �

� 1

2
�JI;0K �T�I	 vT�

�
@M

@p

�
T

(12)

to guarantee properties used in passivity control, where I is the
identity matrix and	 is the Kronecker product operator [17,18]. The
first contribution to the environmental effects vector E�p; v� is the
resulting generalized force of gravity, which is found by differ-
entiating the system potential energy and expressing the result in the
reference frames of the generalized velocity states. The second con-
tribution to this vector is the resulting generalized aerodynamic force
generated by the motions of thewings and tail, which is currently not
well known.

V. Preliminary Simulation Results

A simulation was performed for trimmed straight and level mean
flight to illustrate resulting state trajectories. The ornithopter was
initiated with an airspeed of 5 m=s. Thewingswere flapped at 4.7Hz
and the tail deflections were set to �13 ��0:3491 rad and
�23 � 0 rad. An aerodynamics model for this ornithopter has not yet

been identified; however, for preliminary results a simple quasi-
steady thin airfoil model [19]was used formodeling lift and thrust on
the wings as well as lift and drag on the tail. The aerodynamic coef-
ficients and tail deflections were tuned to keep the ornithopter
trimmed in steady mean flight.

Although controllable, the ornithopter is a highly underactuated
system which only affords control over the flapping frequency of the
wing joints �11 and �12, and position of the tail joints �13 and �23. In
the absence of actuator models for themotors and drivemechanisms,
a feedback linearization control law

��GJ0;IK � �pd � _JI;0K v�KP�pd � p� �KD� _pd � _p��
�G�Cv� E� (13)

was used to synthetically maintain the sinusoidal wing stroke and the
trimmed tail deflections for simulation purposes. The matrix G has
the identity matrix along the lower block diagonal so that the control
law is applied only to the linkage joints. The vector pd is the desired
position and has the prescribed joint trajectories in the last four
elements. The termsKP andKD are positive definite matrices which
regulate the tracking error in a proportional/derivative manner.

The simulated flight path of the fuselage center of mass is
shown in Fig. 4, superimposed with silhouettes of the ornithopter
configuration at several points in time. The longitudinal state trajec-
tories are shown in Fig. 5, where the Euler pitch angle � is used to
show the orientation. The lateral and directional states experienced
small oscillations due to inertial couplings and offsets of the centers
ofmass, but thesevariationsweremanyorders ofmagnitude less than
corresponding longitudinal variables. There was a small drift in the
longitudinal velocity, but otherwise the ornithopter was successfully
trimmed for steady flight. The control law in Eq. (13) was successful
in maintaining wing and tail trajectories, having position tracking
errors on the order of 10�5 rad and velocity tracking errors on the
order of 10�3 rad=s. Previous analysis of flight data [13] reported a
0.030-m amplitude oscillation in altitude, a 0:9-m=s amplitude
oscillation in heave velocity, and a maximum 46:1-m=s2 heave
acceleration, whereas simulation produced results of 0.0290 m,
0:8693 m=s, and 23:0519 m=s2, respectively. Additionally flight
data reported a 0.1571-rad amplitude pitch angle oscillation and a
5:62-rad=s maximum pitch rate, whereas simulation produced
results of 0.0560 rad and 1:8347 rad=s, respectively.

Comparing simulation to the flight data observations, the position
statesmatched better than thevelocity and acceleration states, and the
translational states matched better than the rotational states. The
largest source of error for these discrepancies is expected to be the
aerodynamics model, which used quasi-steady approximations to
describe what is known to be a highly unsteady flowfield [3,6,13].
Sources of error also stem from the rigid body assumptions, which
neglect shape changes in thewings and flexibility in the fuselage and
wing spars, uncertainties in the trim flight condition, and measure-
ment errors in the inertial and geometric properties of the vehicle.
However, despite the simplified aerodynamics model, the simulation
was able to reproduce the trends observed in the flight data,
indicating that the model captured the nonlinear and multibody
interactions, and that an aerodynamicsmodel should be identified for
increased fidelity.
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Fig. 4 Simulated flight path.
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VI. Conclusions

This paper presented the derivation of the equations of motion for
an ornithopter. Variations in the mass properties and observations of
flight data warranted a nonlinear multibody model of the flight
dynamics. Energy methods were used to derive the equations of
motion, which were cast into a convenient form for system identi-
fication, nonlinear control, and simulation. A simplified aerody-
namics model was used to simulate the system.

This paper argued that to meet the demand for an autonomous
ornithopter flight platform with multimission capabilities such
highly agile flight and perching maneuvers, a nonlinear multibody
model of the flight dynamics must be developed. Justification for the
modeling complexity stems from the fact that large and rapid
variations in the mass properties occur, as well as the large flight
envelope requisite for the envisioned maneuver capabilities.

The ornithopter equations of motion were cast into a canonical
form used in the robotics and spacecraft communities. Unlike most
robots and spacecraft, the ornithopter is a highly underactuated
system; however, representing the ornithopter in this form begins to
bridge a gap to a wealth of information on nonlinear control and
adaptive system identification of mechanical systems. Additionally
this canonical form is convenient for system identification and
simulation, can be augmented easily for different aircraft config-
urations, and has a minimal number of state equations with known
properties.

A quasi-steady thin airfoil model of the aerodynamics was used to
simulate straight and level mean flight. Although parameters were
tuned and it is known that the aerodynamic flowfield is highly
unsteady, the simulation appears realistic and was able to capture
general trends measured previously in flight data. This result
indicates the need to identify a more realistic aerodynamics model
and provides further justification for the nonlinear multibody
modeling of the flight dynamics.

Acknowledgments

The authors would like to thank the University of Maryland, The
National Institute of Aerospace, and the NASA Langley Research
Center for their support in this research. Several discussions
with Robert Sanner and Sean Humbert are acknowledged and

appreciated. The authors would also like to thank the members of the
Morpheus Laboratory for their continued teamwork and motivation,
with additional thanks to Nelson Guerreiro for creating the
visualization environment used in the simulation.

References

[1] Sane, S., and Dickinson, M., “The Aerodynamic Effects of Wing
Rotation and a Revised Quasi-Steady Model of Flapping Flight,”
Journal of Experimental Biology, Vol. 205, No. 8, April 2002,
pp. 1087–1096.

[2] DeLaurier, J., “An Aerodynamic Model for Flapping-Wing Flight,”
Journal of the Royal Aeronautical Society, Vol. 97,April 1993, pp. 125–
130.

[3] Harmon, R., Grauer, J., Hubbard, J., and Humbert, S., “Experimental
Determination ofOrnithopterMembraneWing ShapesUsed for Simple
Aerodynamic Modeling,” AIAA Paper No. 2008-6397, Aug. 2008.

[4] Vest, M., and Katz, J., “Unsteady Aerodynamic Model of Flapping
Wings,” AIAA Journal, Vol. 34, No. 7, July 1996, pp. 1435–1440.
doi:10.2514/3.13250

[5] Bush, B., and Baeder, J., “Force Production Mechanisms of a Flapping
MAV Wing,” AHS International Specialists’ Conference on

Aeromechanics, American Helicopter Society, Alexandria, VA,
Jan. 2009.

[6] Roget, B., Sitaraman, J., Harmon, R., Grauer, J., Conory, J., Hubbard,
J., and Humbert, S., “A Computational Study of Flexible Wing
Ornithopter Flight,” AIAA Paper No. 2008-6397, Aug. 2008.

[7] Taylor, G., and Thomas, A., “Dynamic Flight Stability in the Desert
Locust Schistocerca Gregaria,” Journal of Experimental Biology,
Vol. 206, No. 16, 2003, pp. 2803–2829.
doi:10.1242/jeb.00501

[8] Deng, X., Schenato, L., Wu, W., and Sastry, S., “Flapping Flight for
Biomimetic Robotic Insects: Part 1—System Modeling,” IEEE

Transactions on Robotics and Automation, Vol. 22, No. 4, Aug. 2006,
pp. 776–788.

[9] Sibilski, K., “Dynamics of Micro-Air-Vehicle with Flapping Wings,”
Acta Polytechnica, Vol. 44, No. 2, 2004, pp. 15–21.

[10] Wu, J., and Popović, Z., “Realistic Modeling of Bird Flight
Animations,” ACM Transactions on Graphics, Vol. 22, No. 3,
July 2003, pp. 888–895.
doi:10.1145/882262.882360

[11] Rashid, T., “The Flight Dynamics of a Full-Scale Ornithopter,” M.S.
Thesis, University of Toronto, 1995.

[12] Kinkade, S., “Hobby Technik,” www.appingight.com, 2008.

0 0.5 1 1.5 2
0
5

10

r x (m
)

0 0.5 1 1.5 2
−0.05

0
0.05

r z (m
)

0 0.5 1 1.5 2
−0.1

0
0.1

Θ (r
ad

)

0 0.5 1 1.5 2
−1
0
1

11 (r
ad

)

0 0.5 1 1.5 2
2
3
4

12 (r
ad

)

0 0.5 1 1.5 2
−1
0
1

13 (r
ad

)

0 0.5 1 1.5 2
−1
0
1

23 (r
ad

)

time (s)

0 0.5 1 1.5 2
4.5

5
5.5

ν
ν

ω
θθ

θ
θ

θ

θ
θ

θ
x (m

/s
)

0 0.5 1 1.5 2
−1
0
1

z (m
/s

)

0 0.5 1 1.5 2
−2
0
2

y

(r
ad

/s
)

0 0.5 1 1.5 2
−20

0
20

1̇1 (r
ad

/s
)

0 0.5 1 1.5 2
−20

0
20

1̇2 (r
ad

/s
)

0 0.5 1 1.5 2
−1
0
1

1̇3 (r
ad

/s
)

0 0.5 1 1.5 2
−1
0
1

2̇3 (r
ad

/s
)

time (s)

Fig. 5 Simulated state trajectories.
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